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Low-Rossby-number flow past a circular cylinder in a rapidly rotating frame is 
studied when 1 < iV < 2, where N is equal to EkIRo in terms of the Ekman number 
E and Rossby number Ro. For this parameter range the Ea boundary layer contains 
a singularity a t  the rear stagnation point. The asymptotic structure of this 
singularity is shown to  consist of three distinct asymptotic regions, one of which is 
viscous while the others are inviscid. New accurate numerical solutions of the 
boundary-layer equation confirm this singularity structure. The use of Von Mises 
coordinates both simplifies the analysis, and enables numerical solutions to be found 
closer to the critical value N = 1,  beneath which the flow separates upstream of the 
rear stagnation point. 

1. Introduction 
This paper extends the results presented by Page (1985) (hereinafter referred to 

as MAP) on the flow of a fluid layer past a circular cylinder in a rapidly-rotating 
frame of reference. The Rossby number Ro = U*/Q*l* and Ekman number E = 

v*/Q*d *2 are both assumed to be small and such that K O  = O(E$) ; here U* is the frcw 
stream velocity far from the cylinder, d * is the depth of the fluid layer measurcd 
parallel to the axis of rotation, 0" is the angular velocity, v* is the kinematic 
viscosity, and I* is the radius of the cylinder. This configuration was first described 
by Barcilon (1970) and later, in more detail by Walker & Stewartson (1972). Thc 
conclusion of the latter study was that the flow was governed by a parameter N = 

E;/Ro, and that when N > 2 the boundary-layer flow is fully attached and regular at 
all points. This result was obtained by appealing to earlier work on magneto- 
hydrodynamic flow past a circular cylinder (Lcibovich 1967 a ;  Buckmaster 1969, 
1971) which is governed by identical equations. These studies indicated that for 
1 < N < 2 the flow develops a singularity at the rear stagnation point, and that for 
N < 1 the flow separates upstream of this point (see also Page 1987). The precise 
structure of the singularity for 1 < N < 2 was left largely unresolved, although some 
expected features were outlined. Further analysis was provided in MAP, where i t  was 
confirmed that the flow near the rear stagnation point splits into viscous and inviscid 
regions. 

Some experimental results on this configuration are available (Boyer 1970 ; Boycr 
& Davies 1982), but apart from supporting the conclusions of MAP that  thc flow is 
steady and attached for N > 1 ,  they do not provide enough detail to verify the 
precise structure of the flow at the rear stagnation point. They are, however, useful 
for confirming that the flow separates for N < 1, and for indicating thc nature of the 



80 M .  A .  Puge and X. J .  Cowley 

flow once separation has occurred. Thc latter is examined in Page (1987), where a 
method for calculating the separated flow pattern is described. 

Our aim in this paper is to determine the precise form of the singularity structure 
a t  the rear stagnation point for 1 < N < 2. This is one of the few aspects of the flow 
which remains to  be clarified, and has generated a certain amount of controversy in 
the past. The proposed singularity structure, outlined in $3, is similar to that which 
occurs when the flow is a classical non-rotating boundary layer reverses a t  its outer 
edge (Elliott, Smith & Cowley 1983). In the light of the present analysis, the latter 
problem is reconsidered in the Appendix, and i t  is shown that earlier results can be 
generalized and made more specific. 

2. Governing equations 
The equations under consideration in this paper are essentially the same as those 

derived in Leibovich (1967 a ) ,  Buckmaster (1969, 1971) and MAP for the flow in the 
boundary layer on the surface of the cylinder. Using the notation in MAP, they 
are 

where s is the non-dimensional distance around the cylinder from the forward 
stagnation point,  is the velocity tangential to the cylinder and ge = sins is the value 
of that velocity a t  the outer edge of the boundary layer (for further explanation of 
the coordinates the reader is referred to MAP). The parameter N is the same as that 
introduced by Leibovich ( 1 9 6 7 ~ )  and, in the context of a rotating fluid, by Walker 
& Stewartson (1972). I n  this paper the results will concentrate on the case where 
1 < N < 2 ; details of the flow for N 2 2 are presented in MAP, and for N < 1 the flow 
separates so leading to a different Ve (Page 1987). 

The flow near the rear stagnation point, which is the main concern of this paper, 
turns out to be predominantly inviscid (see MAP). For this reason we study the flow 
Geld in terms of a stream-function coordinate, rather than F. Applying a Von Mises 
tr+a,nsformation to (2. l),  with a stream-function defined by 

we obtain (2.4) 

A similar transformation was used by Sychev (1979), to examine the structure of a 
Moore-Rott-Sears (MRS) singular point in a boundary layer on a moving surface. It 
has the advantage that the inertial term is simplified, at the expense of a nonlinear 
form of the viscous term. However, since most of the analysis in this paper will 
concentrate on the inviscid regions of the flow, the latter does not lead to many 
additional difficulties, while the simplification of the inertial term is a significant aid 
to the leading-order analysis. Furthermore, since the order of the equation (2.4) with 
respect to the vertical coordinate is one less than (2.1), less effort is required to solve 
(2.4) both analytically and numerically. 
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Once the function ~ ( s ,  $) has been determined, it is possible to obtain the normal 
velocity ~ ( s ,  $) using the relationship 

derived from the continuity equation (2 .2) .  In  addition, the original vertical 
coordinate F can be recovered by integrating 

to obtain a relationship ~ ( s , $ )  a t  each value of s. From this the velocities can 
be transformed back into functions of s and F, and the solution reconstructed in 
physical space. 

3. Singularity structure near the rear stagnation point 
Numerical solutions of (2.4), such as in MAP and $8, show that as the rear 

stagnation point a t  s = x is approached a singularity develops with, for example, the 
viscous displacement velocity becoming unbounded. Buckmaster ( 1971) proposed 
that the singularity structure consisted of a viscous layer adjacent to the surface of 
the cylinder, two steady inviscid regions further away from the surface, and a final 
‘apparently unsteady’ region a t  large distances from the wall. MAP argued that 
there was only one steady inviscid region above the viscous layer, and that in this 
region the flow was governed by the inviscid version of (2.4), i.e. 

where vo represents the leading-order velocity based upon a Taylor expansion about 
s = X. On writing ro = ( X - s )  Fo(s, $), as suggested by the outer matching condition, 
and integrating (3.1) with respect to s, we find that 

( l - F o ) h ( F o - N + l )  = ( x - s ) P g ( $ )  for 1 < N c 2 ,  (3 .2a)  

Fo = l-(X--s)-lh($) forN = 1, (3 .26)  

where /3 = ( 2 - N ) / ( N -  1) and g($), h($) are unspecified functions of $. For N $: 1, 
the function g is related to the function 9- used in MAP through 9- = g l - N ,  while 
9- = h for N = 1. The precise form of, for example, g($) can only be determined by 
matching with the upstream flow for s < X, although its behaviour for both $ < 1 
and $ $ 1 can be determined from matching arguments (see Buckmaster 1971, MAP 
and below). 

The aim of this paper is to  demonstrate that the solution (3 .2)  represents a two- 
layer inviscid singularity structure, and that as s +X the boundary-layer solution can 
be matched onto the inviscid flow away from the wall without any need for an upper 
‘unsteady’ region (cf. Buckmaster 1971). Unless stated otherwise the case 1 < N < 2 
will be considered ; when N = 1 singularity has a slightly different structure which 
will be described in part in $9. 

To illustrate the two-layer structure, first consider ( 3 . 2 ~ )  in the limit of ( X - s )  
small, with $ and g finite. Fo must then approach ( N -  1)+ ( ~ - s ) ~ ( Z - ~ ) ” ( ~ - ’ ) g ( $ ) ,  
which is the same form as the solution in Buckmaster’s (1971) intermediate layer; 
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FIGURE 1. Leading-order solutions F,(q) in the inviscid region obtained from solving (3.2a) with 
Newton’s method for N = 1.1,1.2, ..., 1.9. 

also referred to as the ‘plateau’ region in MAP (the inner region is the viscous layer 
where $ = O(n-s)). The second inviscid region, which constituted most of the 
inviscid region in MAP and which will be referred to as the outer layer here, can be 
identified by requiring tha t  

r = (--)%($) (3.3) 

is held finite for (n -s) small. The form of g($) in this region will be determined below, 
but its most important property is that it grows indefinitely as 3- co. Consequently 
the solution in this layer spans the range ( N -  1 )  < Fa < 1 as $ varies from O(1) 
values to infinity. The form of Fair) was calculated using Newton’s method and is 
illustrated in figure 1 for various values of N .  All curves approach Fa = 1 as 7 + CO, 

with (1  -Fa) proportional to ~ l - ~ .  

The key to the structure of the outer layer clearly lies in the determination of the 
properties of the function g for large $. Our approach can be outlined as follows. For 
(n-s) + 0 the nature of the solution at  sufficiently large distances from the wall is 
obtained by means of a linearized, but viscous, analysis. For (n - s) < 1, the inviscid 
solution (3.2) must match onto this solution for sufficiently large $. More 
importantly, since the outer layer occurs where @ >> 1,  the function g($) in that layer 
can in fact be determined by matching onto the linearized, large-$, solution for 
(n-s)  of Oil ) .  In particular, the analysis of $4 shows that for 3 9 1 ,  g ( 3 )  is given by 
(4.9). It follows that for (n-s) 4 1 the outer layer, i.e. where 7 = 0(1 ) ,  develops at  
a distance $ N [ - 8 N ( 2 - N )  In (n-s)]; above the wall (the precise scaling is given by 

The above approach for obtaining the singularity structure (i.e. finding the 
linearized outer solution for all s, and then examining the consequences as the 
singularity is approached) has been used by previous authors, for example Brown & 
Stewartson (1965), Stewartson (1973), and van Dommelen & Shen (1985). However, 
the present case may be the first in which the singulartity structure for large $ is 
nonlinear at leading order. 

(6.1)). 
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FIGURE 2. Schematic diagram illustrating the three regions in the boundary-layer structure near 
the rear stagnation point ( i )  inner region, (ii) intermediate region where $ is 0(1), ( i i i )  outer 
region - a logarithmically thin region a logarithmically large distance from the wall. 

In  summary, the boundary layer near the rear stagnation point has an overall 

(i) an inner viscous layer where $ = O(x-s )  and 0 d v < (N-1) ( x - s ) ,  
(ii) an intermediate region where $ = O(1) and v z ( N -  1)  (x -s), and 
(iii) an outer region where $ is given by (6.1) and ( N -  1 )  ( R - s )  < v < (7~-8). 

Further details of each of these layers, and the matching between them, are 
presented in 555, 6 and 7 respectively. First, in 94, the linearized solution sufficiently 
far from the wall is found for all s. 

three-layer structure, as illustrated in figure 2, comprising of: 

4. The linearized asymptotic solution in the edge region 
In  contrast to the following sections, here we do not restrict ourselves to (x - s) < 1 .  

The asymptotic part of the solution of interest here is that far from the wall, i.e. 
in an edge region where $ % 1 ; such a solution was found in terms of the primitive 
variables (s, by Buckmaster (1971), whose analysis was based on that for a classical 
boundary layer by Brown & Stewartson (1965). In  terms of the present coordinates, 
however, the flow far from the wall can most easily be described by following van 
Dommelen & Shen (1985), and introducing a variable w(s, $) defined through 

B = Ve[l -exp ( - w ) ] .  (4.1) 

Substituting (4.1) into (2.4), and retaining only terms of order exp ( - w )  for w % 1, 
we find that 

Given w(0, $), the function w(s, $) for s > 0 can be found by integrating (4.2) 
forward in s. Further, near the front stagnation point, where s 4 1, the full nonlinear 
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flow can be determined from a similarity solution of the form proposed by Leibovich 
(1967~) .  The asymptotic form of this yields 

V - s[ 1 - A,(s /$)~+~ exp ( - ll/"/2Ns2))3 as $18 + co , (4.3) 

w - $'/2Ns2+(N+3) ln$-(N+3) lns-lnA, as $/s+m. (4.4) 

w = &(s) + b,(s) $ + 6,(s) In $ + b,(s) + . . . (4.5) 

where A, is a determinable positive constant for any given value of N .  Hence from 
(4.1), 

For s = O ( l ) ,  we therefore seek a solution of the form 

and i t  follows from substituting (4.5) into (4.2) that  

1 (4.6) 
b, = 1/(W sin2$), b, = 0, 6, = N + 3 ,  

b, = - (N+3) ln(2 sin$s)+(2-N) In (cos+s)-lnA,. 

Near the rear stagnation point where s x K this implies that 

w - $2/8N+(N+3) l n 3 + ( 2 - N )  1n(n-s)-ln(32Am), (4.7) 

and hence V -  (x-s) [1-32A,(~-s)~- '  exp(-$2/8N)/$N+3], (4.8) 

when $ is suficiently large that w % 1. 
Higher-order terms in w, and nonlinear corrections of order exp (-2w), can in 

principle be calculated, but will not be pursued here because they are not of direct 
relevance to the leading-order asymptotic structure at the rear stagnation point. In  
the following sections the singularity structure a t  this point, which was outlined in 
$3, will be given in more detail; in particular we will demonstrate that the three 
different asymptotic regions can be matched together through a 'rational ' expansion 
for (x-5) 6 1. However, first we note that the leading-order term of g($) for $ 9 1 
can be deduced from (4.8) for, when $is sufficiently large that exp ( -  ll/"/8N)/$N+3 << 
( X - S ) ~ - ~  << 1, the solutions (4.8) and ( 3 . 2 ~ )  must match. Hence, from evaluating g 
on the part of a streamline sufficiently far (but not too far) from s = X, it  follows 
that 

In particular, we note that this asymptotic form of g holds where 7 = 0 ( 1 ) ,  i.e. where 
the perturbations to the outer velocity are nonlinear. 

5. The inner region 
This region has been described to some extent in all of the previous studies, 

particularly in regard to the features of the leading-order flow. Conventionally r is 
used as the vertical variable, however in keeping with our use of Von Mises 
coordinates, a slightly different, but equivalent, similarity variable will be used here, 
namely ,u = $/(x-5). 

The flow in the inner layer is obtained by transforming (2.4) into the new variables 
5 and p, yielding 
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Assuming that the flow is antisymmetric about s = IC, we seek a solution near the rear 
stagnation Doint of the form 

On substituting (5.2) into (5.1) and retaining terms of order (n-s), we obtain the 
ordinary differential equation 

f0C -fo + P f J  = - 1 + N ( 1  - f o )  +Nfo(foflY (5.3) 

for f o .  The appropriate solution here is that which satisfies the boundary conditions 
f o ( 0 )  = 0 and f o  + ( N -  1) as p+ co. The existence of such a solution for 1 < N < 2 is 
virtually guaranteed by the previous work on the r expansion (Leibovich 1967b). 
Proceeding to the next order leads to the linear equation 

( N - 4 f o ) f 1 + i u ( f o f J ’  = (4--N) + ~ f i ( f O f ~ ) ’ + ~ f O ( f O f l ) ’ ’ ~  (5.4) 

and the appropriate solution has f l (0)  = 0, with f l  increasing a t  most algebraically as 
p+ co. In  particular, f ,  tends to a constant as p+ co when ,8 > 2, while it is O(p2-fl) 
when /3 < 2 (in this case one of the higher-order terms in the large p expansion tends 
to a constant). More generally, f ,  approaches a constant, say a,, as p+ 00 when 
p > 2n, but has an asymptotic behaviour of O(p”-fl) otherwise. 

When p is not an even integer, we note that the value of the constant term, a,, in 
the asymptotic expansion of f ,  for large p can be obtained by seeking the particular 
solution forced by the pressure-gradient term in the governing linear equation. 
Hence from (5.4), and similar equations for f , ,  we find 

N - 4  16-N-10~; 
3N--4’ 5N-6 ’ 

a,  = ___ a2 = (5.5) 

with a, = ( N -  1 )  from (5.3). An important feature of a, and a2 is that they do not 
exist when N is equal to Q and g, respectively. More generally, i t  can be shown that 
for any positive integer n the denominator of a,  vanishes when N = 1 + 1/(2n+ 1). 
These special cases occur when p is an even integer and the complementary function 
part of the solution for f n  contains a constant term for large p. This forces the 
particular solution forced by the pressure gradient to grow logarithmically ; for 
example when N = Q, (5.4) implies that f 1 + 8  lnp as p+ 00. As a result, the 
intermediate-layer expansion derived in § 7 is more complicated for these special 
cases because logarithmic terms need to be included. 

When matching with the intermediate layer is discussed in $ 7 ,  the asymptotic 
properties of the functions f ,  for p % 1 are needed. Using (5.3) i t  can be shown 
that 

f o - N +  1 - -a,p-fl a s p +  co, (5.6) 

where a. is a calculable constant. In  the intermediate layer, where 3 is order one, this 
matches onto a v-term of order (n-s)fl+l. Further terms in the asymptotic expansion 
of f o  for p 9 1 proceed in a combination of powers of p-fl and pu-2, and match onto 
terms of order ( 7 ~ - s ) ~ @ + ~ P + ~  for non-negative integers m and p .  The higher-order 
terms in (5.2) match onto the same terms in the intermediate layer. For instance, the 
leading-order asymptotic terms of both the particular solution and complementary 
function components of f i  can be shown from (5.4) to be of the form 

f i  N a,+ ...- u,pU2++ ... asp+ 00, (5 .7 )  
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where ctl is a constant, and so match onto the O ( n - ~ s ) ~  and O(n-s)B+l terms 
respectively in the intermediate layer. Further tcrms of the asymptotic expansion for 
fl proceed in powers of both p-p and p-2, and so will match onto terms of order 
(n - ~ ) ~ p + ' ? ~ + '  in the intermediate layer, again for non-negative integers m and p .  For 
N equal to $ a similar expansion to (5 .7)  exists for fi, but with the addition of 
logarithmic terms which match onto terms of the form (n--~)~p+'P+l  In (n-s) in the 
in termediatc layer. 

We note for future reference (see also MAP) that when ilr 2 2, the flow in the inner 
viscous layer is again governed by (5.3), but that  for p $ 1 

(5.8a) 

f o  - 1 -ctop2-N for N > 2. (5.8b) 

6. The outer region 
The variable 7,  defined in (3.3), is order one in this region, where the velocity v 

varies between ( N -  1 )  (n-8) and (n-8). However, rather than use 7,  which involves 
an unknown function g(@), we introduce an alternative variable f ; ,  which is related 
linearly to @ through 

[ = 2 ( 2 -  N )  In (n- s) ++(A' +3) In (--In (n- ln(n-s) I$. (6.1) I ( 2 - N )  

This transformation has been chosen to ensure that 7 is O(1) when f ;  is O(1). Using 
(6.1), we can write (2.4) in terms of the variables f; and s, to obtain 

In(-ln(n-s)) 1 N + 3 + f ;  av 
ln(n-8) 2 ln(n-8) 2 1 - (2 - N )  +$(A' + 3) -- 

= sins coss+N(sins-U)-$(2-N) 

If much more than the leading-order term of the solution to (6.2) is sought, a great 
deal of algebra is necessary, with powers of (n-s), In (n-s) and In ( -In (n-8)) 
occurring. However, the leading-order term is relatively easy to calculate on 
assuming that 

The O(n-s) term in (6.2) then implies that 

V =  (n-8)G0([)+ ... . (6.3) 

(6.4) - Gt - (2 - N )  Go Gk = - 1 + A'( 1 -Go), 

(1 -G~)x+(G~-N+ 1)  = e(t-~o)m-l), 

and on integrating this we find 

(6.5) 

for some constant 6,. On comparison with (3.2) we see that Go is related to the 
function Fo used in $ 3  through 

Go([) = FO(e(6-~o)l(N--1) 1. (6.6) 

The constant f;, can be calculated by matching onto the edge region solution for [ $ 1,  
and so from (4.8) it follows that 

b 

to = 1n(32Am)-+(N+3) In(8N)-&(3N+1) In(2-N). (6.7) 
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The process can. in principle, be continued to obtain higher-order terms in (6.3), 
although in practice it soon becomes intractable. However, the above demonstrates 
that the outer-layer solution is deterministic and that constants which arise in the 
calculation can be evaluated by matching with the edge-region solution. 

Similarly, i t  is possible to match the outer-layer solution (6.3) onto the 
intermediate layer as 5 + - 00. However, the matching process is simplified at  least to 
low order, if instead of 6, we use a variable p defined by 

which is a leading-order approximation to 7 based on (4.9). The use of this coordinate 
eliminates the logarithmic terms multiplying (n-s) in the expansion (6.3). The 
appropriate expansion for B therefore proves to be 

B = (n -8) F,(p) + (n - s ) ~  In (n - 8 )  Fla(p) + (n - s ) ~  In ( -In (n-8)) Flb(p) 
+ ( 7 ~ - s ) ~ F ~ , ( p )  + . . . (6.9) 

where, from matching with the edge-region, F, turns out to be the function defined 
through (3.2) and (4.9). As p+0, 

F, - ( N - l ) + ( 2 - N ) A p ,  (6.10) 

which matches onto the O(n-8) and O(n- .~)p+~ terms in the intermediate layer. 
Similarly, the equations for I!’,,, Flb and F,, can be derived, and their solutions 
examined in the limits of large and small p. For example, the complementary function 
part of Fla, when combined with part of the F,, particular solution, can be shown to 
match onto the O(n-s)Bf1 term in the intermediate layer. It appears that the 
constants multiplying the complementary-function parts of the solution are fixed by 
matching with the edge layer, in the same way that 5, was fixed by this in (6.7).  

7. The intermediate region 
This region is characterized by O( 1)  values of the stream-function $ and it serves 

as a buffer between the inner layer, where B varies between 0 and ( N -  1 )  ( x - s ) ,  and 
the outer layer, where B varies between ( N -  1) (n-s) and (n-8). As described in $3, 
the variable q is small in this region and consequently the function F, in (3.2) is close 
to (N-1). Thus, expanding (3.2) implies that 

(7 .1)  B = ( N -  1) (n - 8 )  + (n - sj8+1(2 - N ) A  g($) + . . . , 
so that there is an O(n-s)p+l perturbation to ( N -  1) (n-s). Strictly, this is incorrect 
once p 2 2 (i.e. N < $), since some of the higher-order $-independent terms fowed 
by the pressure gradient are larger. For this reason it is convenient to isolate the $- 
independent component of the forced solution, say qi, which from (2.4) will satisfy 

d q  - 
ds 

Bi- - sins coss+N(sins-vi). 

If we write tj = t j i+&,  the perturbation velocity B’ turns out to be O(n-s)P+’ for all 

From (7.1) it is clear that the form of the solution in the intermediate layer 
depends on the function g($) introduced in $3. While the properties of this function 
for $ 4 1 and $ % 1 can be determined from matching onto the regions in $5  and $6, 

p > 0. 
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its values for $ of O( 1) can only be fixed by using a numerical approach to integrate 
(2.4) around the cylinder (such as in $8). This dependence of the solution for $ = O(1) 
on upstream conditions is typical of boundary-layer singularities (e.g. Goldstein 
1948), since the region where $ = 0(1) constitutes the bulk of the boundary layer 
upstream. 

A series solution to (7.2), consisting of terms of the form ( ~ - - s s ) ~ P + ~  with p a non- 
negative integer, can be found when N $. 1 + 1 / ( 2 n +  1). The interaction between 
these terms and the O ( ~ - s s ) p + ~  eigensolution in (7.1), through the nonlinear terms in 
( 2 . 4 ) ,  means that the full solution in the intermediate layer will consist of a double 
sum of terms with the form ( ~ - s ) ~ f l + ~ p + ' ,  where m and p are non-negative integers 
(at  least when N + 1 + 1 / ( 2 n +  1 ) ) .  We therefore seek a solution 

(7.3) 

where, from matching, the a,  are as defined in $5, and the first sum is just ui. From 
(7 .1)  the solution for w 1  can be written as 

w1 = (2 -N)&g(@) ,  (7.4) 

where g($)  is as defined before. If this solution is to match with the inner and outer 
regions then from (5.6) and (6.10) 

w1 - - ol,/$fl as 3 --f 0, (7.5a) 

Higher-order terms can be calculated similarly. For example, 

N ( N -  1) N ( 4 - N )  
w2 = - 2 W;+12(N-1)"(3N-4) wl. 

(7 .5b)  

(7.6) 

From ( 7 . 5 ~ )  it  follows that w 2  will match onto terms of order ( n - ~ ) ~ , + l  in the inner 
region, where $ = O(n-s); in fact the ,u-P-2i2n term off, in (5.2). 

From (6.9), (7 .5b)  and (7.6) i t  follows that a match can be made between the 
intermediate layer and higher-order terms in the outer layer. In  particular, since 
w;' is proportional to $2wl for $ & 1, this component of (7.6) will, inter alia, match 
onto the terms of order (n - s ) ~  In (n - s) and (7c - In ( -In (n - s)) in the outer layer, 
i.e. the F,, and FIb terms in (6.9). However, the algebra necessary to complete the 
matching is lengthy, and so will not be reproduced here. Higher-order matching also 
appears to be possible, but for similar reasons this will not be pursued here. 

For the special cases N = 1 + 1 / ( 2 n +  1) it  is necessary to allow for certain of the 
terms in (7.3) to be multiplied by polynomials in In (n-8) as a result of a 'resonance' 
between vi and the eigenfunction in (7 .1) .  Calculations suggest that, a t  least a t  low 
orders, these logarithmic terms do not themselves directly force similar terms in the 
other layers. 

It is convenient a t  this point to  note that the outer region merges into the 
intermediate region for N > 2. The solution in this single inviscid layer (which seems 
to have been overlooked previously) has the form 

8 = (n - s) {l -Q(n-s)2+. . . + (K - s)N--2 wl($) + . . .}, (7 .7)  
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and a satisfactory match with the inner and edge regions (see (4.8) and ( 5 . 8 b ) )  can 
be achieved if 

w1 --a o$"N as $+o, (7.8) 

(7.9) w1 - - 32A, exp ( -  $2/8N)/$N+3 as 3 + 00. 

For N = 2 an expansion in inverse powers of In (z - 5) appears necessary in order to 
match with (5 .8a) .  

8. Comparison with numerical results 
TO verify the structure of the flow near the rear stagnation point the governing 

equation (2.4) was integrated numerically between the forward stagnation point a t  
5 = 0 and a point close to 5 = x. Some numerical solutions were presented in MAP, 
but the numerical method used in that paper was such as to yield poor resolution of 
the singularity structure for values of N close to 1. The major difficulty was caused 
by the rapid thickening of the boundary layer as s + x which could not be adequately 
resolved even by a scaling in F. The numerical method used in this paper, based on 
the transformed equation (2.4), alleviates this problem. However, there are dis- 
advantages in the choice of Von Mises coordinates, particularly near the forward 
stagnation point, where V =  0 and $ = 0, and close to the cylinder surface, where 
v oc 3: as $ + 0. However, both of these difficulties can be overcome with the choice 
of the scaled coordinates # and Y defined by 

based on the predicted behaviour near s = 0, 5 = n and 3 = 0. In  particular, note 
that as s - t x  the new coordinate # is constant along streamlines and therefore the 
flow in the inviscid regions near the rear stagnation point should be well-resolved. 
The transformed coordinates were placed in finite-difference form using a box scheme 
based on Keller & Cebeci (1971). This method is both suitable for unevenly-spaced 
# gridpoints, and efficient when used with a block-tridiagonal matrix inversion 
algorithm. Near 5 = 0 the integrations were started using a similarity solution. The 
accuracy of the numerical solutions was checked through grid-refinement. A typical 
run marched in steps of 0 . 0 0 5 ~  up to 0.9x, beyond which smaller steps down to 
0.00005x were used. The equations are singular a t  5 = x and so the integrations were 
terminated before that point and, where appropriate, the results were extrapolated 
linearly to 5 = x. In  the # direction, typically 500 points were used with an 
exponential stretching between # = 0.005 and q5 = 5 ;  beyond # = 5 the solutions for 
Y were equal to one to within the iteration tolerance of IAYl < lo-''. Such grid sizes 
were usually sufficient to resolve adequately the inviscid part of t,he boundary layer 
for all N 2 1. 

The numerical results in this section will concentrate on features which were not 
examined in MAP ; the reader is referred to that paper for complementary results. 
First, we examine the velocity  near the outer-edge of the boundary layer, i.e. in the 
edge region of $4, which should be given by (4.7). To verify this, the function 
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FIGURE 3. Plots of the function A ( K ,  $), defined in (8.2), obtained from the numerical solutions for 
the boundary-layer flow when N = 1.0,l .l, ..., 2.0. The limiting value of A for each curve is the 
constant A ,  in (4.4). 

was calculated; this expression is chosen so that, according to (4.8), i t  approaches the 
constant A ,  as $+ co for any value of s between 0 and X. In  figure 3 the limit of this 
function as s tends to  .n is plotted for several values ofN and these plots confirm that 
A ( x , $ )  does approach a constant value for large $. Similar graphs of A for other 
values of s have been plotted, but are not shown here ; these all approached the same 
asymptotic value A ,  for each value of N ,  with the only difference between those 
plots and figure 3 being due to a larger 'displacement ' effect as s is increased. 

Turning to the intermediate region, numerical values of g($ )  were calculated using 
the limit of (7.3) as s + n  including the first three terms of the first sum, i.e. v ~ .  In  
principle, this is sufficient to enable g to be calculated for values of /3 less than 7, i.e. 
N > $. The results of these calculations are shown in figure 4 for several different 
values of N .  The forms of g for large and small $ are in accord with the asymptotic 
forms predicted in (7.5). Another feature is that  g approaches infinity increasingly 
rapidly as N is decreased, as would be expected from the exponential term in (7.5).  
To minimize this effect, and for convenience of presentation, the function gN-l  is 
plotted in figure 5 for values of $ where g > 0. The large-$ behaviour indicates that 
the numerical solutions appear to be accurate in the outer layer. 

One measure of the thickness of the outer layer near s = IT is the value of $ a t  which 
B = ~ ~ ( T c - s ) ,  i.e. the mid-value of the velocity in that layer. This quantity was 
sought from the numerical results for values of N between 1.1 and 1.9 and compared 
with the leading-order thickness - [ - 8N(2 - N )  In (X -s)]:  for (TC - s )  4 1,  based on 
(6.1). There is a close correspondence between the two measures of the thickness, 
although for larger values of N the In (--In (X- s)) term in (6.1) also needs to be taken 
into account. This correspondence is not unexpected, considering the extent to which 
the results above confirm the asymptotic expression (4.8) in the edge region. 

Another useful diagnostic of the singularity structure is the ' streamfunction 
displacement ' of the boundary layer 8, defined as limF+m (ve T- $). This is related to 
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FIGURE 4. Plots of g($) obtained from the numerical solutions for the boundary-layer flow. 

using (7.3), when AT = 1.4,1.5, ..., 1.9. 

100 

0 1 2 3 4 5 

3 
FIGURE 5. Plots of g N - I ( $ ) ,  when g > 0, obtained from the numerical solutions for the 

boundary-layer flow when N = 1.2,1.3, . . . , 1.9. 

the true displacement thickness S*, used in MAP, through S* = S/ve. From (2.6), 6 
can be expressed as 

and thus it can be used as another measure of the thickness of the boundary layer in 
(s, $)- rather than (8, +space. From ( 5 . 2 ) ,  (6.3) and (7.1) 

S- /3[ -8N(2--N)  l n (~ - s ) ] i  for(n-s) < 1, (8.4) 

4 FLM 194 
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FIGURE 6. The displacement 6, defined in (8.3), plotted as a function of s between s = 0 and 
s = 71, for N = 1.0,1.2, ..., 2.0,3,5,10 and N = 03 (broken line). 

which becomes increasingly large as the rear stagnation point is approached. In  
figure 6, 6 has been plotted for several values of N ,  based on the numerical 
integrations, and there is a clear thickening of the boundary layer as N is decreased 
(this is less pronounced as N + 2 ) .  This is in accord with the asymptotic form (8.4), 
although that expression does not represent the dominant behaviour of S very 
accurately as s + n (this is probably due to the slow convergence of the series (6.3) in 
the outer layer, which proceeds in powers of In (n - s) and In ( -In (7t - s) ) .  

In figure 7 numerical values of the viscous blowing velocity em = dS/ds are plotted 
for several values of N .  A feature which is immediately apparent is that  the blowing 
velocity remains one-signed for smaller values of N ,  so that the boundary layer is 
expelling fluid all around the cylinder. This is in contrast with the situation for N 2 2 ,  
where the boundary layer always entrains fluid close to the rear stagnation point; 
in fact tim + - 00 as s + n for 2 < N < 3 (see below). Once N < 2 the numerical results 
suggest that tim + + CQ as s --f n, indicating a marked change in the structure of the 
solution a t  N = 2. This is in agreement with the asymptotic expression based on (8.4) 
that for 1 < N < 2 

p - 2 N ( 2 - N )  
when (n-8) 4 1. 

am--[ (n-s) In (n-s) 1 
We note that the region near the rear stagnation point where tia, is positive becomes 
increasingly thin as N + 2 - . 

Also shown in figures 6 and 7 are numerical values of 6 and tim for some values of 
N larger than 2.  In  all these cases the streamfunction displacement S is bounded as 
s tends to n; in particular (5.8) and (7.7) suggest that for 2 < N < 3 and N > 3 it  is 
proportional to ( ~ - 8 ) ~ ~ ~  and (n-s), respectively. As a consequence, the dis- 
placement thickness 6* is finite a t  the rear stagnation point for N > 3,  as was shown 
in MAP, but unbounded in proportion to (n-sSfN-' for 2 < N < 3. The proposed 
structure also demonstrates that  the viscous blowing velocity am is finite for N > 3, 
but increases without bound in proportion to (7t - s)N-3 for 2 < N < 3, both of which 
are supported by the numerical evidence in figure 7 .  



Flow near the rear stagnation point of a circular cylinder 93 

N =  1.0 1.2 1.4 1.6 
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0 $x x 

FIGURE 7. The viscous blowing velocity tim = d8/ds plotted around the cylinder between 
s = 0 and s = A ,  for N = 1.0,1.2, ..., 2.0,3,5,  10 and N = co (broken line). 
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FIUURE 8. Plots of the uvalues on each streamline for s near x when N = $. The values of $ plotted 
are spaced logarithmically between $ = 0.001 and $ = 10. Notice particularly the convergence of 
streamlines to the line ti= ( N -  1) (n-s) (shown broken), representing the intermediate layer. 

S 

The three-layer structure of the boundary-layer near s = x can be demonstrated 
from the numerical solutions by plotting the values of B on each streamline for s close 
to x. This is illustrated in figure 8 by plotting the curves for several 0 ( 1 )  values of 
$ when N = 1. Within the achievable numerical resolution, these curves approach 
B~ z ( N -  1)  ( x - s )  as s+ n, thus becoming part of the intermediate-layer. Note that 
all curves corresponding to finite values of $ will eventually tend towards vi as s 
approaches K .  This feature is also evident in the velocity profiles shown in figure 5 of 
MAP. 

4-2 
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0 in R 

FIGURE 9. Streamline contours for the boundary-layer flow around the cylinder for N = i, 
represented in the physical coordinates (8 ,  v). The thickening and emptying of the boundary layer 
near the rear stagnation point (s = X)  is apparent in this plot. The streamline interval is A$ = 2 and 
the displacement thickness 6* is shown by a broken line, for comparison. 

S 

Another illustration of the structure can be obtained by plotting the streamlines 
of the flow in the physical ( s ,  +plane. This is shown in figure 9, again for the typical 
value of N = %, and it is apparent from this that  the streamlines enter the boundary 
layer from the outer edge before s !z t x  and leave as the rear stagnation point is 
approached. In  terms of T the thicknesses of the three layers near s = x are 0(1), 
O(x - s)-l and [ - 8N(2 - N )  In ( x  - s ) ] i / ( x  - s ) ,  although these regions are not clearly 
identifiable from the streamlines shown in figure 9. 

9. The case N = 1 
When N = 1 the singularity structure described in $$5-7 needs to be modified 

because the plateau velocity f& in the intermediate layer is O ( X - S ) ~  rather than 
O ( x - s ) .  The analysis in the edge region leading to (4.8) is unchanged. The same 
matching procedure as in $ 4  then shows from (3.2b) that  for 3 sufficiently large 

h($) - 32A, exp (-@)/p. 

5 = 2 In (71-8) + 2 In (-In ( x - 8 ) )  + [-$ In ( x  -s)l". 

(9.1) 

More formally, following (6. I ) ,  we introduce the scaled coordinate 

(9.2) 

On substituting into (2.4), expanding B in a series of the same form as (6.3), 

C -  (7~-ss)G,(()+ ..., (9.3) 

Go = 1 -$A,  exp f-t). 
and matching with the edge region solution (4.8), we find that 

(9.4) 

When expressed in terms of the variable $, (9.4) is equivalent to (9.1) to leading 
order. We note that B reduces to zero a t  C,, = ln($A,) and near this value it is 
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necessary to rescale since the pressure gradient term, which turns out to be zero to 
leading order above, needs to be included. For (7c - s) 4 1 we therefore introduce the 
scaled coordinate 6 defined by 

( ~ t - s s ) ~ <  = l-h($)/(It-s), (9-5) 

and expand v as 2)- ( ~ c - - s ) ~ H ~ ( ~ ) .  (9.6) 

5-ca = H a + +  In (2Ha- 11, 19.7) 

with H a  = 6 to leading order for 5 9 1, as would be expected from ( 3 . 2 b ) .  The 
constant <a appears to be determined by matching with higher-order terms in the 

Proceeding as before we find that H a  satisfies 

outer layer. As 6+- 00, 

so that the velocity tends exponentially to the term forced by the pressure 
gradient, 

I n  fact, the problem needs to be rescaled again for 5 large and negative, to match 
onto the intermediate layer, but the presence of the exponentially small term makes 
a comprehensive asymptotic analysis complicated. Here we just outline two features 
of the solution. First, in the intermediate layer, i.e. where $ = 0(1 ) ,  we follow $ 7  and 
write the solution in the form v = vi + v‘, where V’ is the perturbation velocity from 
the solution forced by the pressure gradient. As before, a eertain dependence on the 
upstream conditions is expected in the solution for $ = O(1).  Substitution into (2.4), 
and then solution for an eigenfunction, suggests that 8’ has the form 

(9.9) 

where W is determined by matching upstream. The exponentially small amplitude of 
this term is consistent with (9.8), but the precise matching is not immediately 
apparent. 

Secondly, in the inner viscous layer where $ = 0(1t--S)~, i.e. F =  0 ( 1 ) ,  the inertial 
terms are negligible, and the leading-order solution has a particularly simple form in 
terms of the primitive variable F, 

(9.10) 

On substitution into (8.3) the above asymptotic structure predicts a stream- 
function-displacement of the form 

v - i(7c-s)’ [I -exp ( - F ) ] .  

(9.11) 

Like (8.4) this is in qualitative agreement with the numerical solutions in figure 6, 
although the slow convergence of the logarithmic expansion makes a quantitative 
comparison difficult. As in $8, the blowing velocity am can be calculated from (9.11), 
giving 

(9.12) 

which indicates why the numerical values for am increase so rapidly as s+n in 
figure 7. 

The appearance of the additional inviscid region in the case of N = 1, which from 



96 M .  A .  Page and S. J .  Cowley 

(9.5) is of thickness O ( ~ - S ) ~  in $, introduces difficulties with the resolution of the 
numerical solutions which leads to their breakdown further from s = 7c than occurred 
for N > 1 (typically at s = 0.96671: in this study). Up to that point, the features in 
those solutions are consistent with the general structure outlined above. In  
particular, the form of h($) in (9.1) is confirmed numerically, as is the value of $ 
where the intermediate and outer layers meet. They also clearly demonstrate that 
the velocity in the intermediate layer is independent of @ to leading order, with 
vz S ( 1 r - 5 ) ~  (as would be expected from V$ in (7.3) for N = 1).  

Finally, we compare this structure for N = 1 with the structure for N > 1 
illustrated in figure 2.  For N = 1 the inner region has thickness O(n - s ) ~ ,  whereas this 
was O(n-5) for N > 1. Both the intermediate region and the outer region for N = 1 
remain as in figure 2 ,  but in addition there is a thinner inviscid region, also near 
$ = [-8 In (n--)If, of thickness O ( K - S ) ~  in 3. 

10. Conclusions 
The principal result of this paper is the description of the boundary-layer 

structure near the rear stagnation point in terms of three asymptotic regions for 1 < 
N < 2 .  Rational expansions are proposed for each region when (n-s) 4 1 and the 
matching between them is demonstrated, a t  least to low order. “he proposed 
singularity structure differs from that of MAP by identifying two inviscid regions, 
and noting that g ( $ )  has a specific known form in the outer layer, i.e. where 7 = O(1). 
The structure is also different from that of Buckmaster (1971) who proposed an outer 
layer with a scaling $ = O(n -s)-=, a > 0, and tentatively suggested an additional 
‘unsteady’ edge region. However, in essence, the logarithmic scaling (6.1) for the 
outer layer is the only important difference between our singularity structure and 
Buckmaster’s. 

The use of Von Mises coordinates for both the analysis and the numerical 
calculations seems to have significant advantages over (s, coordinates. These 
advantages are expected to carry over to a number of similar cases where a 
singularity structure is to be resolved (e.g. Lam 1987), although, if difficulties are not 
to be encountered with multi-valuedness, the function $(s ,  F )  should be monotonic in 
F (i.e. B should be one-signed within the boundary layer). This is almost always the 
case for flows governed by the classical (as opposed to the interactive or triple-deck) 
boundary-layer equations. 

The unbounded growth of the viscous blowing velocity as s + n  means that 
sufficiently close to the rear stagnation point, the asymptotic scalings used to derive 
(2.1) break down. To see this we note that, from (8.5), the second-order inviscid-flow 
correction to boundary-layer theory is driven by an O(Ei/(n - s) [ -In (n - 5)]9 

normal velocity at the outer-edge of the boundary layer. From the non-dimensional 
form of Bernoulli’s equation, this forces a pressure gradient of similar magnitude, 
assuming the perturbation velocity is no greater than the original mean flow at the 
rear stagnation point. A triple-deck-like interaction occurs, and the problem needs to 
be rescaled, when the induced pressure gradient is comparable with the original 
pressure gradient driving the flow, i.e. once (n - s) - Ei/[  - In Eli. 

At leading order the rescaled problem has an interactive pressure gradient term in 
all the asymptotic layers. Also, the outer inviscid layer proves to be nonlinear, which 
means that the inviscid flow near the rear stagnation point will no longer look like 
simple stagnation point flow. We do not attempt to solve the rescaled problem here, 
although this is necessary to determine whether or not the rescaled problem is 
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singularity free. If a singularity is present in the rescaled problem, then separation 
may occur some distance upstream of the rear stagnation point, so requiring a 
different approach to the derivation of the interactive flow (cf. Page 1987). 

From the conclusions of $8, a similar argument to that above for 2 < N < 3 
suggests that it is necessary to rescale for ( 7 ~ - s ) ~ - ~  - Ei. That such a rescaling is 
necessary seems to have been overlooked previously. For N 2 3 the non-interactive 
boundary-layer solution seems to be valid at least to within a boundary-layer’s width 
Of 5 = A. 

Appendix 
In  this Appendix we re-examine the nature of the singularity that occurs in a non- 

rotating classical boundary layer when the velocity a t  the edge of the boundary layer 
reverses before the flow elsewhere. The asymptotic structure of such a singularity 
was found by Elliott et al. (1983), however the present treatment determines a 
previously unknown constant analytically. In addition, it turns out that their 
problem is a special case, and is not necessarily the most likely case to be encountered 
in practice. 

The classical boundary-layer equations in Von Mises coordinates are 

au dU 
ax dx :$( u-=U-+u- u - .  

For definiteness, the boundary conditions 

u = W ( x )  on $ = 0, u + U ( x )  as $+a, (A 2) 

will be assumed, where u is the velocity parallel to the wall (cf. §2), $ is the 
streamfunction, W is the wall velocity, U is the external velocity, U(z,) = 0, and for 
simplicity W > U for all x. The velocity profile at z = zo < xs is taken as given (but 
also see below), and the solution is sought in x > xo on the basis that u > U for all 

First the linearized solution is sought a t  the edge of the boundary layer. This was 
derived in terms of (x, y )  coordinates by Brown & Stewartson (1965). For our 
purposes we write (cf. (4.1)) 

substitute into (A 2), and then linearize on the assumption that w % 1, to obtain 

x, $. 

u =  U[l+exp(-w)], (A 3) 

As in $4 a solution for large $ is now sought of the form 

w = iB,(x) (2 + B, (x) $ + B,(x) In $ + B, (z) + . . . (A 5) 

where B, =+ 0. Such a series solution satisfies (A 4) if 

B, = 1/(CZ+21(x)), B, = C,B,, Bo = Co, 

B, = 2 lnU+(C,-t) lnB,+$fB,+C,, 

I(x) = Udx, I where 

and the Cj are constants determined by matching to the solution a t  x,. 
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Often the solution is of similarity form at x,; for example if both V(x,) and 
W(x,) are non-zero constants, then C,  = C ,  = 0, Go = 1, and C, is fixed by solving the 
full nonlinear similarity solution for all $ at x,. 

The singularity which develops as x --f x, is inviscid to leading order for $ % 1. The 
approximation equivalent to (3 .2  a )  is therefore 

u - [UZ+f($) l$ ,  (A 8) 

which is a reduced form of Bernoulli's equation. For sufficiently large values of $ the 
function f ($ )  can be fixed by matching to (A 3) and (A 5) in an overlap region in 
which exp (-+R,, $.") -+ (x,-x) < 1 and B,, = B,(x,). We conclude that 

The solution for $ = O(1) expands as 

u - uo($)+ ..., (A 10) 

and must match onto (A 8), (A 9) for $ & 1 .  The precise form of u, is determined by 
matching to the upstream flow (cf. the intermediate layer). 

In terms of Von Mises coordinates, the streamfunction displacement 6 (defined as 
lim, rCO [Uy-$1) can be written as 

Hence from (A 8) to (A 10) 

so that the displacement becomes increasingly negative as the singularity is 
approached (cf. $$8-9, where for 1 d N < 2 ,  the displacement was large and 
positive). Similarly the viscous blowing velocity, d6/dx, becomes increasingly 
negative. 

The structure of the above singularity is similar, but not identical t o  that given by 
Elliott et ul. (1983). They implicitly assumed that H, = 0, which might be viewed as 
a special case of the above generic type of singularity (see also Brown & Stewartson 
1965). Adopting the present approach for their singularity, we find that 

w - C,  $+c, In $+ 2 In U +C,-Ci (A 13) 

and then, as before, it follows that 

and 

In  particular, Elliott et al. (1983) considered the problem where 

1 -ex 
W = l ,  u=- x o = -  co, x, = 0. 
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A regular perturbation expansion far upstream shows that C, = 1.6, = 0, C, = In 2, 
in which case 

Higher-order corrections demonstrate this formula is correct to o( 1). Elliott et al. 
(1983) left the coefficient in (A 17) undetermined, but a comparison with figure 4(6) 
of that paper indicates that the numerical results presented there are in very good 
agreement with the above theory, and so add credibility to our approach (note that 
Elliott et al.’s p is our 6, and that there is a sign error in the ordinate of figure 
4b).  

6 - 2 In (-x). (A 17) 
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